1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
from keras.layers import Dense, Dropout, Input
from keras.models import Model
from keras.utils import to_categorical
import numpy as np
# 生成numpy数据
datas = np.random.random((1000,100))
labels = np.random.randint(10, size=(1000,1))
# one-hot 编码
labels = to_categorical(labels, num_classes=10)
def myNet(input_dim=100, class_num=10):
inputs = Input(shape=(input_dim,))
x = Dense(64, activation='relu')(inputs)
x = Dropout(0.5)(x)
x = Dense(32, activation='relu')(x)
x = Dropout(0.5)(x)
prediction = Dense(class_num, activation='softmax')(x)
model = Model(inputs=inputs, outputs=prediction)
return model
model = myNet()
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.fit(datas, labels, batch_size=8, epochs=50)
|