1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
import numpy as np
from keras.layers import Dense, Flatten
from keras.models import Sequential
from kreas.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
# Generate numpy data
x_train = np.random.random(size=(100, 100, 100, 3))
y_train = np.random.randint(10, size=(100, 1))
y_train = keras.utils.to_categorical(y_train, num_classes=10)
x_test = np.random.random(size=(20, 100, 100, 3))
y_test = np.random.randint(10, size=(20, 1))
y_test = keras.utils.to_categorical(y_test, num_classes=10)
model = Sequential()
model.add(Conv2D(32, (3,3), activation='relu', input_shape=(100,100,3)))
model.add(Conv2D(32, (3,3), activation='relu'))
model.add(MaxPooling(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(MaxPooling(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd,
loss='categorical_crossentropy')
model.fit(x_train,y_train, epochs=10, batch_size=32)
score = model.evaluate(x_test, y_test)
print(score)
|